Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cai-Feng Ding, ${ }^{a}$ Mei-Ling

Zhang, ${ }^{\text {b }}$ Xue-Mei Li ${ }^{\text {a }}$ and Shu-Sheng Zhang ${ }^{\text {a }}$
${ }^{\text {a College of Chemistry and Molecular }}$ Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China, and ${ }^{\text {b }}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.044$
$w R$ factor $=0.119$
Data-to-parameter ratio $=14.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Aqua(2,9-dimethyl-1,10-phenanthroline- $\kappa^{2} N, N^{\prime}$)dinitratocobalt(II)

In the title compound, $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the $\mathrm{Co}^{\text {II }}$ atom is coordinated by a bidentate 2,9 -dimethyl- 1,10 -phenanthroline ligand, two nitrate ligands and one water molecule in a distorted octahedral environment. One of the nitrate ligands chelates in a bidentate manner and the other is monodentate. The molecule is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving water molecules and by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a two-dimensional network. The packing is further stablized by $\pi-\pi$ interactions.

Comment

Metal-phenanthroline complexes are good indicators for hybridization detection in DNA electrochemical biosensors (Wang et al., 1996). In our search for new indicators (Zhang et al., 2005), the title complex, (I), was synthesized.

(I)

The structure of (I) consists of a $\mathrm{Co}^{\mathrm{II}}$ atom coordinated by a bidentate $N, N^{\prime}-9,10$-dimethyl-1,10-phenanthroline ligand, one bidentate and one monodentate nitrate anion and one water molecule in a distorted octahedral environment (Fig. 1). The water and $\mathrm{N} 3 / \mathrm{O} 1 / \mathrm{O} 2 / \mathrm{O} 3$ ligands occupy the axial positions, with an $\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{O} 1$ bond angle of $151.2(1)^{\circ}$. All the bond lengths and angles are within normal ranges (Allen et al., 1987).

There are two intramolecular $\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 5$ and $\mathrm{C} 14-$ $\mathrm{H} 14 A \cdots \mathrm{O} 6$ hydrogen bonds, forming two six-membered rings. In the crystal structure of (I), the water molecules act as donors to form $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). These hydrogen bonds involving the nitrate anions link the molecules into chains along the c axis (Fig. 2). These chains are connected into a three-dimensional framework by other $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). The short $C g 5 \cdots C g 5^{i}$ distance of $3.564 \AA[C g 5$ is the centroid of the C5-

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted.

Figure 2
A view of the crystal structure of (I), down the b axis, showing the chains. Intermolecular hydrogen bonds are denoted by dashed lines.

C8/C12/C13 ring; symmetry code: (i) $-x,-y, 1-z]$ indicates $\pi-\pi$ stacking interactions between the phenanthroline ring systems.

Experimental

To a solution of 2,9-dimethyl-1,10-phenanthroline ($0.21 \mathrm{~g}, 1 \mathrm{mmol}$) in ethanol $(10 \mathrm{ml})$ was added a solution of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}(0.12 \mathrm{~g}, 1 \mathrm{mmol})$ in distilled water $(10 \mathrm{ml})$. The mixture was stirred and then refluxed for 9 h . The hot solution was then filtered into another flask containing ethanol-water ($1: 2 \mathrm{v} / \mathrm{v}$). Brown crystals of (I) appeared over a period of one week by slow evaporation at room temperature $(0.30 \mathrm{~g}$, yield $75 \%)$.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$Z=4$
$M_{r}=409.22$
Monoclinic, $P 2_{1} /$ c
$a=11.1392$ (10) £
$b=10.8081$ (10) \AA
$c=15.0542$ (10) \AA
$\beta=113.287$ (5) ${ }^{\circ}$
$V=1664.8$ (2) \AA^{3}
Data collection
Siemens SMART 1000 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.752, T_{\text {max }}=0.918$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0683 P)^{2}\right. \\
& \quad+0.3288 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.40 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

Co1-O1W	$2.067(2)$	Co1-O5	$2.130(2)$
Co1-N1	$2.112(2)$	Co1-O1	$2.211(3)$
Co1-N2	$2.124(2)$	Co1-O6	$2.309(2)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2^{\text {i }}$	0.82	2.49	3.096 (5)	132
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O}^{\text {i }}$	0.82	2.06	2.825 (3)	155
$\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{O}^{\text {ii }}$	0.82	2.09	2.777 (4)	140
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 5$	0.96	2.12	3.071 (4)	173
$\mathrm{C} 7-\mathrm{H} 74 \cdots \mathrm{O} 4^{\text {iii }}$	0.93	2.54	3.418 (5)	158
C14-H14A \cdots O6	0.96	2.38	3.333 (4)	172
Symmetry codes: $x-1,-y+\frac{1}{2}, z-\frac{1}{2} .$	$x,-y+$	(ii)	+1, $-y+$	$\text { + }+\quad \text { (iii) }$

Carbon-bound H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ $=0.93$ and $0.96 \AA$ for aromatic and methyl H , respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C})$ where $x=1.5$ for methyl H or 1.2 for aromatic H atoms. The water H atoms were located in a difference map and refined as riding, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Special Project of Qingdao for Leadership of Science and Technology (grant No.

metal-organic papers

05-2-JC-80) and the Outstanding Young Adult Scientific Research Encouraging Foundation of Shandong Province (grant No. 2005BS04007).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M. \& Dontha, N. (1996). Anal. Chem. 68, 2629-2634.
Zhang, S.-S., Niu, S.-Y., Qu, B., Jie, G.-F., Xu, H. \& Ding, C.-F. (2005). J. Inorg. Biochem. 99, 2340-2347.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

