metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cai-Feng Ding,^a Mei-Ling Zhang,^b Xue-Mei Li^a and Shu-Sheng Zhang^a*

^aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China, and ^bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.005 Å R factor = 0.044 wR factor = 0.119 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

Aqua(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)-dinitratocobalt(II)

In the title compound, $[Co(NO_3)_2(C_{14}H_{12}N_2)(H_2O)]$, the Co^{II} atom is coordinated by a bidentate 2,9-dimethyl-1,10-phenanthroline ligand, two nitrate ligands and one water molecule in a distorted octahedral environment. One of the nitrate ligands chelates in a bidentate manner and the other is monodentate. The molecule is stabilized by $O-H\cdots O$ hydrogen bonds involving water molecules and by $C-H\cdots O$ hydrogen bonds to form a two-dimensional network. The packing is further stabilized by $\pi-\pi$ interactions.

Comment

Metal-phenanthroline complexes are good indicators for hybridization detection in DNA electrochemical biosensors (Wang *et al.*, 1996). In our search for new indicators (Zhang *et al.*, 2005), the title complex, (I), was synthesized.

The structure of (I) consists of a Co^{II} atom coordinated by a bidentate N,N'-9,10-dimethyl-1,10-phenanthroline ligand, one bidentate and one monodentate nitrate anion and one water molecule in a distorted octahedral environment (Fig. 1). The water and N3/O1/O2/O3 ligands occupy the axial positions, with an O1W-Co1-O1 bond angle of 151.2 (1)°. All the bond lengths and angles are within normal ranges (Allen *et al.*, 1987).

There are two intramolecular C1-H1A···O5 and C14-H14A···O6 hydrogen bonds, forming two six-membered rings. In the crystal structure of (I), the water molecules act as donors to form O-H···O hydrogen bonds (Table 2). These hydrogen bonds involving the nitrate anions link the molecules into chains along the *c* axis (Fig. 2). These chains are connected into a three-dimensional framework by other O-H···O and C-H···O hydrogen bonds (Table 2). The short $Cg5 \cdots Cg5^i$ distance of 3.564 Å [Cg5 is the centroid of the C5Received 8 June 2006 Accepted 8 September 2006

 $D_x = 1.633 \text{ Mg m}^{-3}$

 $0.28 \times 0.20 \times 0.08 \; \rm mm$

9118 measured reflections

3287 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0683P)^2]$

+ 0.3288*P*] where $P = (F_o^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.40$ e Å⁻³

2650 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.08 \text{ mm}^{-1}$

T = 293 (2) K

Plate, brown

 $R_{\rm int} = 0.025$

 $\theta_{\rm max} = 26.0^\circ$

Z = 4

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted.

Figure 2

A view of the crystal structure of (I), down the *b* axis, showing the chains. Intermolecular hydrogen bonds are denoted by dashed lines.

C8/C12/C13 ring; symmetry code: (i) -x, -y, 1 - z] indicates $\pi - \pi$ stacking interactions between the phenanthroline ring systems.

Experimental

To a solution of 2,9-dimethyl-1,10-phenanthroline (0.21 g, 1 mmol) in ethanol (10 ml) was added a solution of $\text{Co}(\text{NO}_3)_2$ (0.12 g, 1 mmol) in distilled water (10 ml). The mixture was stirred and then refluxed for 9 h. The hot solution was then filtered into another flask containing ethanol–water (1:2 ν/ν). Brown crystals of (I) appeared over a period of one week by slow evaporation at room temperature (0.30 g, yield 75%).

Crystal data

$$\begin{split} & [\text{Co(NO}_3)_2(\text{C}_{14}\text{H}_{12}\text{N}_2)(\text{H}_2\text{O})] \\ & M_r = 409.22 \\ & \text{Monoclinic, } P2_1/c \\ & a = 11.1392 \ (10) \text{ Å} \\ & b = 10.8081 \ (10) \text{ Å} \\ & c = 15.0542 \ (10) \text{ Å} \\ & \beta = 113.287 \ (5)^{\circ} \\ & V = 1664.8 \ (2) \text{ Å}^3 \end{split}$$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.752, T_{\max} = 0.918$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.119$ S = 1.033287 reflections 235 parameters H-atom parameters constrained

Table 1

Selected bond lengths (Å).

Co1-O1W	2.067 (2)	Co1-O5	2.130 (2)
Co1-N1	2.112 (2)	Co1-O1	2.211 (3)
Co1-N2	2.124 (2)	Co1-O6	2.309 (2)

Table 2

Hydrogen-bond	geometry	(A,	°).
---------------	----------	-----	-----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1W1\cdots O2^{i}$	0.82	2.49	3.096 (5)	132
$O1W - H1W1 \cdots O3^{i}$	0.82	2.06	2.825 (3)	155
$O1W - H2W1 \cdots O4^{ii}$	0.82	2.09	2.777 (4)	140
$C1 - H1A \cdots O5$	0.96	2.12	3.071 (4)	173
$C7-H7A\cdots O4^{iii}$	0.93	2.54	3.418 (5)	158
$C14 - H14A \cdots O6$	0.96	2.38	3.333 (4)	172
Symmetry codes: (i) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$.	$x, -y + \frac{1}{2},$	$z - \frac{1}{2};$ (ii)	-x+1, -y+1,	-z + 1; (iii)

Carbon-bound H atoms were positioned geometrically, with C–H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{\rm iso}({\rm H}) = x U_{\rm eq}({\rm C})$ where x = 1.5 for methyl H or 1.2 for aromatic H atoms. The water H atoms were located in a difference map and refined as riding, with O–H = 0.82 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm O})$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

This project was supported by the Special Project of Qingdao for Leadership of Science and Technology (grant No.

05–2-JC-80) and the Outstanding Young Adult Scientific Research Encouraging Foundation of Shandong Province (grant No. 2005BS04007).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. Nardelli, M. (1995). J. Appl. Cryst. 28, 659. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M. & Dontha, N. (1996). Anal. Chem. 68, 2629–2634.
- Zhang, S.-S., Niu, S.-Y., Qu, B., Jie, G.-F., Xu, H. & Ding, C.-F. (2005). J. Inorg. Biochem. 99, 2340–2347.